EXAMPLE 1
Verify the Reynolds number is dimensionless, using both the FLT system and MLT system for basic dimensions. Determine its value for ethyl-alcohol flowing at a velocity of 3m/s through a 5cm diameter pipe.

EXAMPLE 2
At a sudden contraction in a pipe the diameter changes from D_1 to D_2. The pressure drop, ΔP, which develops across the contraction, is a function of D_1 and D_2, as well as the velocity, V, in the larger pipe, and the fluid density, ρ, and viscosity, μ. Use D_1, V and μ as repeating variables to determine a suitable set of dimensionless parameters. Why it be incorrect to include the velocity in the smaller pipe as an additional variables.
EXAMPLE 3

Water sloshes back and forth in a tank as shown in Figure 1. The frequency of sloshing, ω, is assumed to be a function of the acceleration of gravity, g, the average depth of the water, h, and the length of the tank, l. Develop a suitable set of dimensionless parameters for this problem using g and l as repeating variables.

EXAMPLE 4

Assume that the flowrate, Q, of a gas from a smokestack is a function of the density of ambient air, ρ_a, the density of the gas, ρ_g, within the stack, the acceleration of gravity, g, and the height and diameter of the stack, h and d, respectively. Use ρ_a, d and g as repeating variables to develop a set of pi terms that could be used to describe this problem.
EXAMPLE 5

The water flowrate, \(Q \), in an open rectangular channel can be measured by placing a plate across the channel as shown in Figure 2. This type of a device is called a weir. The height of the water, \(H \), above the weir crest is referred to as the head and can be used to determine the flowrate through the channel. Assume that \(Q \) is a function of the head, \(H \), the channel width, \(b \), and the acceleration of gravity, \(g \). Determine a suitable set of dimensionless variables for this problem.

In some laboratory tests, it was determined that if \(b=0.9m \) and \(H=10cm \), then \(Q=0.07m^3/s \). Based on these limited data, determine a general equation for the flowrate over this type of weir.